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Tilted wave emission in optical parametric oscillators induced by a bichromatic pumping
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~Received 5 January 2002; published 24 May 2002!

Tilted wave emission is found in a mean-field model of a degenerate optical parametric oscillator pumped by
a bichromatic field with a frequency offset much smaller than the cavity free-spectral range. Tilted wave
emission arises due to a nonadiabatic mechanism induced by the slow pump modulation, and disappears when
either one of the two pump waves is blocked.
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The mechanism underlying pattern formation in broa
area nonlinear optical cavities, such as in lasers, optical p
metric oscillators~OPOs!, and Kerr cavities with injected
signal, is usually dictated by a rather simple geometric r
by means of which diffractive tilted waves can fit the cav
resonance allowing maximum energy extraction from
medium ~see, e.g.,@1–8#!. In mean-field models, the trans
verse wave-numberkc of the patterns scales likekc;A2u,
whereu[vc2v is the cavity detuning parameter that me
sures the distance of the longitudinal frequencyvc of the
cavity from the excitation frequencyv. Pattern formation is
thus prevented for a positive detuning parameter,u.0. A
rather distinct mechanism for pattern formation may oc
when the dynamics of the system becomes nonautonom
and involves at least two scalar wave fields. Such a mec
nism has been recently identified and studied for OPO
laser systems by allowing the cavity detuning parameteru to
periodically and slowly vary in time@9,10#. In this case, it
was shown that, even on the positive detuning side of ca
resonance, i.e., foru(t).0 at any time, pattern formation
becomes possible. The effect of cavity detuning modulat
is to bring the system periodically from above to belo
threshold, i.e., the instantaneous growth rate of perturbat
is periodically swept from positive to negative values. Owi
to the two-field dynamics, in the temporal windows whe
the instantaneous growth rate is negative, the damping is
monotonic, instead damped coherent oscillations occur
frequency that depends on the transverse wave numbe
perturbation. Theoverall growth rate of transverse perturb
tions over one modulation cycle is largely influenced by
existence of such coherent oscillations, and it may hap
that a perturbation with a nonzero wave number is favo
despite itsinstantaneousgrowth rate is not the highest. Thi
mechanism for pattern formation was referred to asnonadia-
batic since it disappears when the modulation is either
fast or too slow as compared to the typical time scale of
system. Owing to the rather generic nature of such a me
nism, one can expect nonadiabatic tilted wave emission
occur whenever the autonomous dynamics of the syste
broken, not necessarily by modulation of cavity detuni
@11#.

In this Brief Report, we present another example of no
diabatic tilted wave emission by considering a degene
OPO subjected to a bichromatic pumping@11#. We consider
the mean-field model of a broad-area doubly resonant de
erate OPO with flat end mirrors that converts a not-resona
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nearly monochromatic plane-wave pump field at frequen
2v into degenerate signal and idler waves at frequencyv
~Fig. 1!. We assume that the pump wave is bichromatic, co
prising two spectral components at frequencies 2v6V ~see
Fig. 1!. Assuming a frequency separation 2V of the two
pump waves much smaller than the cavity free-spectral ra
and of the order of the cavity linewidth, a mean-field equ
tion describing the dynamics of the normalized amplitudeA
of intracavity signal field at frequencyv can be derived us-
ing the same technique as detailed in Ref.@12#. In the
paraxial approximation and assuming perfect phase matc
in the nonlinearx (2) crystal, the mean-field equation reads

] tA52~g1 iu!A1m~ t !A* 1 ia¹2A2uAu2A, ~1!

where g is the cavity decay rate for the signal field;u
5(vc2v) is the detuning parameter that provides the d
tance of the nearest longitudinal cavity resonancevc from
v; ¹25]x

21]y
2 is the transverse Laplacian;a is the diffrac-

tion parameter; and

m~ t !5m1 exp~ iVt !1m2 exp~2 iVt ! ~2!

is the parametric gain, wherem1 andm2 are proportional to
the amplitudes of the external pump waves at frequen
2v2V and 2v1V, respectively. Let us notice that, in cas
of a single monochromatic wave pumping the crystal, i
for m150 or m250, Eq. ~1! can be cast in an autonomou
form by the substitutionA5B exp(6iVt/2), yielding

] tB52S g1 iu6 i
V

2 DB1m1,2B* 1 ia¹2B2uBu2B. ~3!

Equation~3! describes in the usual form the parametric do
conversion process of pump photons at frequency 2v7V
into photons at frequencyv7V/2, with an effective detun-
ing parameter given byu1,2[u6V/2. In this case, it is
known that a pattern forming instability sets in at the OP
threshold through a tilted wave mechanism whenever
effective detuning parameteru1,2 is negative@4#. Notice that
if u is positive andV,2u, bothu1,2 are positive, and pattern

FIG. 1. Schematic of a doubly resonant degenerate OPO wi
bichromatic pump.
©2002 The American Physical Society05-1
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formation is hence prevented if either one of the two pu
waves is blocked. Let us now consider the case where
two pump waves aresimultaneouslyincident into the crystal.
In this case, Eq.~1! is strictly nonautonomous, with coeffi
cients that are periodic with periodT52p/V. The stability
analysis of the zero solutionA50 and the onset of parame
ric instability can be performed in this case using Floq
theory following an analysis similar to that given in Ref
@9,10#. For the sake of simplicity, we assume that the pu
waves have the same amplitude, e.g., thatum1u5um2u
[m0/2, and we takem0 as the bifurcation parameter in Eq
~1!. Moreover, after a suitable redefinition of the phase oA
and a time translation, one may set in Eq.~1! m(t)
5m0 cos(Vt). The bichromatic pumping thus realizes a slo
modulation, at a frequencyV, of the amplitude of the para
metric gain. To investigate the linear stability of the trivi
zero solutionA50, that corresponds to the OPO bein
below threshold, let us setA5A1 exp(2gt1ik•r )
1 A2* exp(2gt2ik•r ), where k is the wave vector of the
perturbation andr5(x,y) contains the transverse spati
variables. The small amplitudesA1,2 of perturbation satisfy
the following linearized equations:

dA1

dt
5 iukA11m~ t !A2 , ~4!

dA2

dt
52 iukA21m~ t !A1 , ~5!

whereuk[2(ak21u) andk[uku. The solution to Eqs.~4!
and ~5! in one period can be cast in the matrix for
@A1(T),A2(T)#T5M @A1(0),A2(0)#T, where the coefficients
of the 232 matrix M satisfy the relationsM225M11* and
M215M12* . If s65s6(m0 ,k) are the eigenvalues of the ma
trix M, according to Floquet theory an instability for th
perturbation with wave-numberk occurs whenever

us6u>exp~gT! ~6!

for either one of the two eigenvalues. By taking the equa
in Eq. ~6!, we obtain the neutral stability curvem05m0(k)
for the instability of the perturbation with wave-numberk.
The threshold for parametric oscillation is then given
m th5mink m0(k)5m0(kc) with critical wave-numberkc .
We note that, owing to the relations among the matrix co
ficients, one hass65Re(M11)6$@Re(M11)#221%1/2, so
that the determination of the instability condition requires
knowledge of the matrix coefficientM11 solely. The calcula-
tion of M11 can be obtained by numerical integration of Eq
~4! and ~5! in one period with the initial condition
@A1(0),A2(0)#T5(1,0), so thatM115A1(T). In Fig. 2, the
main results of the linear stability analysis are report
showing the behavior of the OPO threshold@Fig. 2~a!# and of
the critical wave-numberkc versus frequencyV @Fig. 2~b!#
for u51 andg50.1. In Fig. 2~a!, the behavior of the insta
bility boundary for the zero mode (k50) is also reported for
comparison. A pattern forming instability, corresponding to
nonvanishing critical wave number, is observed forV.2u
and in a sequence of frequency intervals forV,2u that
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become narrower as they accumulate towardV→0. Typical
examples of neutral stability curves with a nonvanishi
critical wave number forV,2u and V.2u are shown in
Fig. 3. For V,2u, the existence of frequency interva
where off-axis emission occurs is a signature of the non
tonomous dynamics induced by the interference of the
pump waves: stopping either one of the two pump wa
would in fact prevent off-axis emission. The tendency of t
system to emit off-axis waves forV,2u is related to the
existence of coherent field oscillations whenum(t)u becomes
smaller thanu, which may largely influence the overa
growth rate of the perturbation over one modulation cyc
Such a phenomenon is analogous to that found in the cas
modulation of detuningu and constant parametric gainm,
which was extensively discussed in Refs.@9,10#. For V
,2u, the qualitative behavior of OPO threshold and critic
wave number versus frequencyV, shown in shown in Figs.
2~a! and 2~b!, is indeed fully analogous to that found in th
case of modulation of detuning~see, e.g., Fig. 1 of Ref.@9#!.
In particular, the asymptotic value of the threshold forV
→0 is found by the condition that the average growth rate
perturbation due to the parametric gain in one modulat
cycle equals the loss rate, that is

FIG. 2. ~a! Threshold m th for parametric oscillation~solid
curve!, and~b! corresponding critical wave-numberkc as a function
of frequency offsetV. The dashed curve in~a!, partially overlapped
with the solid one, is the threshold for parametric oscillation in t
plane-wave limit (k50). The vertical dashed lines in~a! and ~b!
correspond to the abscissaV52u. For V.2u, the solid curve in
~b! is overlapped with the curvekc5@(V/22u)/a#1/2. Parameter
values are:a51, u51, andg50.1.

FIG. 3. Neutral stability curve for~a! V50.5 and~b! V53. The
other parameter values are the same as in Fig. 2. In~b!, the dashed
line is the behavior of the neutral stability that one would obtain
stopping the pump beam at frequency 2v2V @Eq. ~8! in the text#.
5-2



tio
ic
o

as

-

-

e

th

r-
ne
-

o
ve
de
e-
s,
e
s
m

n
a

bi
al

a
od
xi
d
th

r-

li-

of
is

d in
a

ha-
ate
ld.
that
and
s is
is-
e-
ro-
be

eri-
ro-
ight

for-
m-

a
ize

BRIEF REPORTS PHYSICAL REVIEW E 65 057205
ReF 1

TE0

T
Am th

2 cos2~Vt !2u2G5g. ~7!

A notable difference as compared to the case of modula
of detuning is the absence of a cutoff frequency above wh
off-axis emission is prevented. In the case of modulation
cavity detuningu5u(t) and constant pumpingm, the exis-
tence of a cutoff frequency is due to the fact that, for a f
modulation, one can replaceu(t) by its time average in the
mean-field equation@9#. Conversely, in the case of modula
tion of the parametric gainm with constant detuningu, for
V.2u a threshold lowering to 2g is observed, correspond
ing to off-axis emission with a critical wave-numberkc that
is well approximated by the geometric tilted wave rulekc
5@(V/22u)/a#1/2 with an effective detuning given byu1
5u2V/2 ~see Fig. 2!. This circumstance is related to th
fact that, forV.2u, the pump wave at frequency 2v1V
can resonantly excite off-axis waves with wave-numberkc
@see Eq.~3!#, and at leading order one can disregard
effect of the other pump wave. Indeed, Fig. 3~b! shows that,
for V.2u, the neutral stability curve obtained by the rigo
ous Floquet analysis can be well approximated, at least
the critical wave-numberkc , by the one obtained by disre
garding the effect of the pump wave at frequency 2v2V,
i.e., by the curve

m0~k!52Ag21~ak21u2V/2!2. ~8!

Above the linear instability, a set of amplitude equations
standard Landau form with cubic terms solely can be deri
near threshold to describe the competition of neutral mo
on the critical circlek5kc using the same technique as d
tailed in Refs.@9,10#. As it was shown in those reference
though the nonautonomous dynamics strongly affect the n
tral stability curve allowing for off-axis wave emission, it ha
no appreciable effect on the nonlinearity of the syste
which rules out the pattern selection mechanism. For Eq.~1!,
amplitude equations predict the formation of roll patter
due to the fact that cross saturation dominates over self s
ration in the nonlinear cubic terms@9#. The prediction of
nonadiabatic pattern formation provided by the linear sta
ity analysis has been confirmed by a direct numerical an
sis of Eq. ~1! in two-transverse spatial dimensions using
standard split-step pseudospectral technique with peri
boundary conditions. Numerical simulations indicate off-a
emission in the far field with the formation of roll-dominate
patterns with the calculated transverse wave vector in
ys
.
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near field. A typical example of off-axis wave emission, co
responding to the parameter values of Fig. 3~a!, is shown in
Fig. 4. Notice that a fast periodic modulation of roll amp
tude occurs on the time scale of the external modulation@see
Fig. 4~c!#. As a final remark, we note that the phenomenon
off-axis wave emission induced by a bichromatic pumping
not restricted to the degenerate OPO configuration studie
this Brief Report, but it can be observed analogously in
nondegenerate OPO model@10#.

In conclusion, we have presented a nonadiabatic mec
nism for pattern formation in a doubly resonant degener
optical parametric oscillator pumped by a bichromatic fie
Off-axis emission is sustained by the coherent dynamics
occurs due to the slow modulation of the parametric gain
disappears when either one of the two pumping beam
stopped. Analogies and differences with off-axis wave em
sion previously studied in case of modulation of cavity d
tuning have been pointed out. We envisage that the bich
matic pumping scheme proposed in this Brief Report may
more accessible than cavity length modulation for an exp
mental observation of nonadiabatic pattern formation p
cesses and may help in dissipating any suspicion that m
be hidden in the interpretation of such processes@11#.

FIG. 4. Snapshots of near-field~a! and far-field~b! spatial in-
tensity profiles of signal field at successive times showing the
mation of roll patterns starting from a small random noise. Para
eter values are the same as in Fig. 3~a!. The parametric gain ism0

51.1. In ~c! are shown the oscillations of the roll amplitude over
few modulation cycles. The computation window is a square of s
82382 on a 1283128 spatial grid; time step:dt50.01.
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